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Abstract
We report a theoretical scheme that enables the calculation of maximally
localized Wannier functions within the formalism of projector-augmented
waves (PAW), which also includes the ultrasoft pseudopotential (USPP)
approach. We give a description of the basic underlying formalism and
explicitly write out all the required matrix elements using the common
ingredients of the PAW/USPP theory. We report an implementation of the
method in a form suitable for accepting the input electronic structure from
USPP plane-wave DFT simulations. We apply the method to the calculation of
Wannier functions, dipole moments and spontaneous polarizations for a range
of test cases. A comparison with norm-conserving pseudopotentials is reported
as a benchmark.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Wannier functions (WFs) can be obtained by a unitary transformation of the extended
wavefunctions of a periodic system [1, 2]. So far, the effective circulation/application of WFs
in electronic structure calculations has been hindered by their intrinsic non-uniqueness [1, 2].
The related degrees of freedom can be chosen, e.g., by making use of the symmetry properties
of the system, as proposed by [3] and lately by [4, 5]. In 1997 Marzari and Vanderbilt proposed
a further approach [6, 7] for exploiting the non-uniqueness: the proposed methodology allows
one to extract, from a selected manifold of bands, the set of WFs with the maximum spatial
localization, i.e. the maximally localized Wannier functions (MLWFs). On one hand, MLWFs
are attractive because they constitute a complete and orthonormal basis set with real space
localization. On the other hand, with respect to other numerical real space bases, they also
carry the physical information of the starting Bloch functions. Indeed, MLWFs may yield a

0953-8984/07/036215+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/3/036215
mailto:ferretti.andrea@unimore.it
http://stacks.iop.org/JPhysCM/19/036215


J. Phys.: Condens. Matter 19 (2007) 036215 A Ferretti et al

chemical view of molecular bond orbitals, and they can be exploited for the computation of
the spontaneous polarization in periodic systems [8–10], becoming very popular for tackling
these issues in advanced materials [11–13]. In addition, MLWFs have most recently been
proposed for calculating the transport properties of nanosize conductors connected to external
electrodes [14–18].

The calculation of MLWFs was originally implemented [6] for a projection from
Bloch orbitals expanded on a plane-wave basis set in density functional theory (DFT)
calculations, within the norm-conserving pseudopotential (NCPP) framework. Norm-
conserving pseudopotentials [19, 20], that allow one to neglect core electrons in the evaluation
of physical observables, are usually characterized by a high transferability of an element to a
variety of chemical environments. However, the norm conservation in the core region is a strong
constraint, that affects the computational effort of the DFT calculations. As a consequence,
some chemical species, such as first-row elements (e.g. C, N, O, F) and especially transition
metals (e.g. Mn, Fe, Co, Ni, Cu) and rare earths (e.g. La, Gd, Yb), require an extremely high
number of basis functions (e.g. plane waves), in order to be described with a satisfactory
accuracy. Unfortunately, the typical systems of interest in nanoscience and specifically in
molecular electronics contain atoms of those critical species.

A first attempt to solve this problem within the pseudopotential framework was the use of
ultrasoft pseudopotentials (USPPs) [21]. The norm conservation constraint is relaxed, allowing
for a drastic reduction of the plane-wave kinetic energy cut-off. The price of this reduction is
an increase of the complexity of the formalism; further augmentation terms [21] must be added
for the computation of relevant matrix elements, in order to correct the wrong normalization
of the wavefunctions. In parallel, the theory of projector-augmented waves (PAW) [22] offers
an alternative more general framework including both pseudopotentials and augmented bases
(like e.g. LAPW). Indeed, it has been demonstrated [22–24] that the USPP procedure may be
mapped into the PAW theory and we refer the reader to the original papers for further details.
We therefore extended the original Marzari–Vanderbilt [6] approach for MLWFs to the PAW
scheme. This allows us on one hand to extend this technique to a larger electronic structure
community, and on the other hand to compute MLWFs from USPP Bloch functions as a direct
application of the general theory.

The paper is organized as follows: in section 2 we first write down the salient quantities
that enter the computation of the WFs, and then we show the formal equivalence between
PAW and USPP theories and express the MLWFs within such theories in a general framework;
in section 3 we report the results of the application of our method to several test cases, that
explore both the chemical bonding and the electrical polarization in the pertinent cases; finally
we draw our conclusions in section 4.

2. Formalism

2.1. Maximally localized Wannier functions

In this section we give a brief introduction to the theory of maximally localized Wannier
functions. A more detailed description can be found in the original papers [6, 7]. In the case of
an isolated band, Wannier functions can be defined [1, 2] as a combination of the Bloch orbitals
|ψk〉 corresponding to different k-points as follows:

|wR〉 = V

(2π)3

∫
BZ

dk e−ik·Reiφk |ψk〉 (1)
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where eiφk is a k-dependent phase factor. This definition has been generalized [6] to a group of
bands leading to the expression

|wR,m〉 = V

(2π)3

∫
BZ

dke−ik·R ∑
n

U k
nm |ψk,n〉. (2)

Here the extra degrees of freedom related to the phases of the Bloch eigenstates are collected
in the unitary matrices U k. In the one-band case it has been demonstrated that a suitable choice
of the phases eiφk leads to WFs which are real and exponentially decaying in a real space
representation [2]. In the many-band case [25] this theorem does not hold any longer but the
arbitrariness in the unitary (gauge) transformation U k can be exploited. Following Marzari
and Vanderbilt [6] we define a spread functional �, which gives a measure of the degree of
localization of the WF set. It reads

�
[{U k}] =

∑
n

[〈r̂ 2〉n − 〈r̂〉2
n

]
, (3)

where 〈·〉n is the expectation value of a given operator on the nth WF calculated using the
U k gauge transformation. It is therefore possible to define the maximally localized Wannier
functions (MLWFs) as the WFs resulting from (2) by means of the unitary transformation
{U k} that minimizes the spread functional. The {U k} matrices can be computed by the
direct application of standard minimization algorithms (e.g. steepest-descent or conjugate-
gradient approaches) on the functional �

[{U k}]. The related details have been fully discussed
elsewhere [6].

According to the formal analysis of the 〈r̂〉n and 〈r̂ 2〉n terms given by Blount [26, 6], it is
possible to demonstrate that the dependence of � on the gauge transformation is determined
only by the so-called overlap integrals Mk,b:

Mk,b
mn = 〈ψk,m | e−ib·r̂ |ψk+b,n〉

=
∫

Crystal
dr u∗

k,m(r)uk+b,n(r), (4)

uk,m(r) being the periodic part of the Bloch states ψk,m(r) = eik·r uk,m(r). Here we deal
with a regularly discretized mesh of k-points, where the b-vectors connect nearest-neighbour
k-points. The detailed form of the position expectation values and of the spread functional
(including its gradient w.r.t. to U k) in terms of the overlap integrals is reported in appendix A.
Since the representation of Bloch eigenstates enters only the calculation of the Mk,b integrals,
these quantities are the main objects to deal with when using a USPP or PAW formalism. The
detailed treatment is reported in section 2.3.

2.2. PAW and ultrasoft pseudopotentials

The PAW formalism has been introduced by Blöchl [27, 28, 22] and it has
also been demonstrated [24] that the Vanderbilt ultrasoft pseudopotential (USPP)
theory [21, 29, 30, 23, 31] can be obtained within the PAW approach with some further
approximations.

Blöchl’s starting point is to partition the volume of the system by setting spherical regions
(atomic spheres) around each atom. In each sphere two complete sets of wavelets1 ({|φae

i 〉} and
{|φps

i 〉}) localized in the sphere are defined. While the former, when truncated, is intended to
work with all-electron (AE) functions, the latter should be smoother and easily representable
in plane waves. It is therefore possible to introduce a well defined linear operator mapping
one-to-one AE-like functions into smoother pseudo-functions and vice versa:
1 Wavelets have defined angular momentum (e.g. their angular parts are spherical harmonics), but are not supposed to
be atomic eigenstates or even to be orthogonal.
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|ψae〉 = T̂ |ψps〉, (5)

where

T̂ = I +
∑
I,i

(|φae
I i 〉 − |φps

I i 〉
) 〈βI i |. (6)

The index I runs over different atoms (e.g. different atomic spheres), while 〈βI i | are the
projectors2 related to the pseudo-wavelets |φps

I i 〉. The T̂ operator acts on the pseudized functions
to reconstruct [23] the AE ones.

Matrix elements and expectation values of a generic operator Â on the physical AE states
can be written as

Amn = 〈ψps
m | Âps|ψps

n 〉 = 〈ψps
m |T̂ † ÂT̂ |ψps

n 〉. (7)

One of the main results of [22] is the explicit expression for Âps, which we report here for the
case of local and semilocal operators:

Âps = Â + Âaug,

Âaug =
∑
I,i j

[
〈φae

I i | Â|φae
I j 〉 − 〈φps

I i | Â|φps
I j 〉

]
|βI i 〉〈βI j |. (8)

The second term ( Âaug) in the rhs of (8) takes into account the corrections due to the use of the
pseudo-functions instead of the AE ones, and from here on it will be called the augmentation
term. At this point it is useful to define the quantities QI

i j(r) and q I
i j (augmentation densities

and charges respectively) as

QI
i j (r) = φae∗

I i (r) φ
ae
I j (r)− φ

ps∗
I i (r)φ

ps
I j (r), (9)

q I
i j =

∫
drQI

i j(r). (10)

Within these definitions, (8) for local operators A(r) can be recast in a more convenient form:

Âaug =
∑
I,i j

[∫
drQI

i j (r)A(r)
]

|βI i 〉〈βI j |. (11)

Setting Â to the identity in (8) and (11), scalar products are given by 〈ψps
m |Ŝ|ψps

n 〉 where the
number operator3 Ŝ (that characterizes also the USPP formalism) is given by

Ŝ = T̂ † T̂ = I +
∑
I,i j

|βI i 〉q I
i j 〈βI j |. (12)

In the same way, by setting A(r′) = eδ(r′ − r) we obtain an expression for the density:

n(r) = nps(r)+ naug(r),

naug(r) = 2e

Nk

∑
mk

∑
I,i j

〈ψps
k,m |βI i 〉QI

i j (r)〈βI j |ψps
k,m〉, (13)

where nps(r) is the density contribution of the pseudo-wavefunctions. Since we are able to
express all the quantities of interest in terms of the soft pseudo-states, the quantum problem
can be solved directly in this representation. In order to do this, it is necessary to augment
the Hamiltonian operator: the procedure leads to additional terms which have exactly the same

2 Since the pseudo-wavelets are not orthogonal their projectors are not simply the associated bras of the given kets.
3 The number operator Ŝ is also known as the overlap operator. We here adopt the former notation in order to avoid
confusion with the overlap integrals defined in (4).
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role as that of the pseudopotentials in standard PW calculations. The inclusion of augmented
elements will also affect therefore the procedure for MLWF calculation (see below).

Moving to the USPP framework, the generalization introduced by Vanderbilt [21] is
twofold. (i) More than one projector per angular momentum channel can be taken into account:
the inclusion of multiple projectors per channel enlarges the energy range [27, 21] over which
logarithmic derivatives are comparable with the full potential case, thus increasing the overall
portability of the pseudopotential. (ii) By relaxing the norm conservation constraint of the
reference pseudo-states, the pseudo-wavefunctions are smoothed: thus, the required cut-off
energy for PW representation can be drastically lowered. The fact that properties (i) and (ii)
are verified for the PAW wavelets φi establishes the connection between the PAW and USPP
methods. In fact, (i) is naturally valid for the wavelets φps

i , because these form a basis set, and
therefore have in principle an infinite number of states for each angular momentum channel;
(ii) is valid as well, and the possibility of non-norm conservation in passing from |φae

i 〉 to
|φps

i 〉 is accounted for by non-zero q I
i j terms in (9), (10). Consequently, the PAW theory for

wavefunction reconstruction can be basically adopted also in the case of USPP [28, 24].
While the PAW method is in principle an exact AE (frozen-core) approach,4 the USPP

method adopts a further approximation [24],5 represented by the requirement of pseudizing the
augmentation densities QI

i j(r) (9). Since these terms contain the AE reference states, they are
not simply writable on a PW basis: the USPP pseudization is done to make them suitable for a
PW representation. This also means that the total density from (13) would be PW representable
within such an approach. Even though the augmentation densities are pseudized, they must
capture some features of the physical AE density. Consequently, their PW cut-off energy may
be larger than the one associated with the pseudo-wavefunction density (nps(r) in (13)).

2.3. Maximally localized Wannier functions within PAW/USPP

As mentioned in section 2.1, Bloch wavefunctions enter the calculation of MLWFs only
through the overlap matrix elements Mk,b, defined in (4). Therefore, the reconstruction of
these integrals from the knowledge of pseudo-wavefunctions completely solves the problem
of computing MLWFs within a PAW/USPP formalism. Once overlap matrices have been
calculated, we no longer distinguish between whether the parent Bloch wavefunctions were
pseudized or not.

The overlaps being Mk,b
mn (4), the matrix elements of the local operator e−ib·r̂, we built up

the corresponding augmentation by setting A(r̂) = e−ib·r̂ in (11). Exploiting the translational
symmetry of the crystal, overlaps can be written as

Mk,b
mn = 〈ups

k,m |ups
k+b,n〉 +

∑
I,i j

QI
i j (b)〈ψps

k,m |βk
I i 〉〈βk+b

I j |ψps
k+b,n〉, (14)

where we have defined

QI
i j (b) =

∫
dr QI

i j(r)e
−ib·r, (15)

βk
I i (r) = 1√

Nk

∑
R

eik·RβI i (r − R). (16)

Summation over ions I in (14) is done in a single unit cell. Details of the calculation of these
quantities are reported in appendix B. We stress that the scalar product of |ups〉 functions cannot

4 The PAW formalism is presented here in a all-electron frozen-core fashion but a full all-electron implementation is
also compatible with the theory [22].
5 Other differences between PAW and USPP approaches arise in the form of the effective (pseudo)potential acting of
the pseudo-wavefunctions. See e.g. [22] for a more detailed discussion.
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be simply augmented by the Ŝ (12) operator like those involving |ψps〉’s. In order to work
with the periodic part |ups〉 of the Bloch functions, first we have to reconstruct the AE Bloch
states by means of T̂ and then we can obtain the required |ups

k,m〉 states by applying the local

operator e−ik·r̂. Since this last operator does not commute with T̂ , we are not allowed to directly
work on |ups〉 with the reconstruction operator. In the first scalar product of (14) the number
operator Ŝ = T̂ †T̂ has been therefore substituted by the augmented operator M̂ = T̂ †e−ib·r̂ T̂ .
We thus need to introduce the Fourier transform of the augmentation densities QI

i j(b) instead
of the augmentation charges q I

i j . We also note that in the thermodynamic limit the k-point

grid becomes a continuum, so that b → 0. This limit leads to identical Ŝ and M̂ operators.
Therefore, within discrete k-meshes the use of Ŝ instead of M̂ is an approximation expected
to give the best performance in the limit of a large number of k-points. We will refer to this
approximation as the thermodynamic limit approximation (TLA). We will comment more on
its numerical aspects in section 3.

The problem of calculating Wannier functions within USPP has also been faced
elsewhere [32–34]. In a first attempt, Vanderbilt and King-Smith [32] extended the calculation
of the spontaneous polarization through the Berry phase [9, 10, 8] to the USPP procedure. Since
the Berry phase [10] is directly related to overlap integrals, an expression for its calculation is
reported in (23) of [32]. This expression adopts the Ŝ number operator instead of M̂ . Therefore,
the result does not completely agree with the one presented here (14), but it can be read as an
approximating formula having the right thermodynamic limit in view of the above discussion.
Bernasconi and Madden [33, 34] derived instead the formalism for MLWFs with USPP in a
simplified approach [35] valid only in the case of �-sampled supercells. Although the basic
ingredients (e.g. overlaps) are the same, our treatment is valid for generic periodic systems,
and recovers the �-only calculation as a special case. Furthermore, the proof given in [33]
cannot be straightforwardly extended to the more general PAW case. The authors generalized
the augmentation operator for the density (13) also to the case of the density matrix and then
derived the augmentation for the e−iGi ·r̂ operator. Here instead the Gi are the generators of
the reciprocal lattice. We note that the result of Bernasconi and Madden is coherent with our
treatment, while the first one of Vanderbilt and King-Smith [32] is not. Following Bernasconi
and Madden, Thygesen and co-workers [36] recently derived an expression for overlap matrices
within USPP for periodic systems, considering a �-only supercell containing the whole crystal.

Closing this section we wish to underline that matrix elements of the form
〈ψk,m |e−i(q+G)·r̂|ψk+q,n〉 enter also into other physical problems. A particularly appealing case
is the calculation of the one-particle Green function in the GW approximation [37, 38]. Current
implementations [39–41] of the method experience DFT wavefunctions mainly through the
above defined matrix elements, while no direct access to the density is required. The extension
of GW calculations to the case of PAW [42, 43] or USPP is therefore feasible along the same
lines as we presented here for Wannier functions. We note, however, that the numerical cost is
extremely higher due to the larger number of overlaps to be computed.

2.4. Numerical details

In this section we would like to describe some issues related to the numerical performance
of the method. We implemented this formalism in the freely available WANT code [44], for
the calculation of electronic and transport properties with WFs. We also took advantage of
the complete integration of the WANT code with the PWSCF package [45], which explicitly
treats the DFT problem using USPPs. From here on we focus on the USPP formalism, even
though a large part of the discussion is still valid also in the PAW case. The most important

6
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advantage of using the USPP construction for Wannier functions is the scaling of the original
DFT calculations, which has been described elsewhere [30]. However, this scaling also has an
effect on the actual computation of WFs and we analyse this aspect in detail.

As we described above, almost the whole of the changes induced by the USPP description
(relative to NCPP) in the calculation of MLWFs is related to the implementation of (14). Details
on how to compute |βk

i 〉 and Qi j(b) are reported in appendix B. Since no reference to the charge
is made, only the very smooth wavefunction grid is used throughout the calculation. While a
linear scaling with the number of plane waves is exploited in the first term (pseudo-overlaps)
of (14), scalar products between projectors and pseudo-states in the second term (augmentation
overlaps) are the price to pay for introducing USPPs. When we consider that the number of β
projectors Nβ is of the same order as the number of bands Nb (but usually larger by a factor
between one and two), we see that the pseudo-state and augmentation overlap terms have the
same scaling, namely N2

b × Nk × NPW. However, the pseudo-overlaps turn out to have a larger
prefactor6 and represent the leading term. Usually, USPPs allow for a reduction of the PW cut-
off by a factor of 2–3 for first-row elements, up to 5 or even more for atoms with d or f states.
This leads to a reduction of the PW number NPW by a factor of around 3–10 or more. Even if
the scaling w.r.t. NPW is linear, it more than compensates the effort of augmenting overlaps and
makes the introduction of USPPs numerically advantageous. Our experience shows that USPPs
avoid the creation of bottlenecks in the computation of overlaps and make the WF localization
the leading part of the calculation.

Finally, we note that in order to give a guess for the iterative minimizations involved in
the MLWF method, it is sometimes required to compute the projections of Bloch states onto
some starting localized functions [6, 7]. The augmentation of scalar products is performed as
usual accounting for the Ŝ number operator (12). Projections on the β-functions are required
as well, but they have already been computed and it turned out that scaling is linear w.r.t. the
PW number as before. Therefore, no implications on the above discussion arise.

3. Applications

In this section we apply the above described formalism to some test cases, ranging from
periodic crystals to isolated molecules. To be precise, we study fcc copper bulk, wurtzite AlN,
and Watson–Crick DNA base pairs. We address a number of physical properties connected to
Wannier functions: interpolation of the electronic structure, calculation of dipole moments and
spontaneous polarization, analysis of the chemical bonding. All the calculations are performed
with both norm-conserving and ultrasoft pseudopotentials. The numerical implications in using
the USPP-TLA approach for the augmentation of overlaps are also discussed. We choose
very simple systems for which MLWFs can be computed also with NCPPs and USPPs are
not required. These choices allow us to test directly the USPP accuracy against the standard
accuracy of the NCPP framework, for which a bibliographic record exists.

3.1. Copper bulk

We compute MLWFs for fcc copper, which has already been used as a test case in the
literature [7, 34, 36] for WFs. We adopt a 6 × 6 × 6 mesh of k-points to sample the Brillouin
zone and compute six WFs corresponding to the lowest s–d manifold. In the disentanglement
procedure [7] (used to get the optimal subspace for WF localization) we freeze the Bloch

6 This fact comes first due to the presence of the sum over b-vectors (giving a prefactor from 3 to 6) and secondly
because the coupling of different k-points for pseudo-overlaps makes wavefunction handling more cumbersome.
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Figure 1. The fcc copper band structure: solid lines represent DFT Kohn–Sham bands (USPP)
while dotted lines are results calculated using WFs.

eigenstates below the Fermi energy (frozen states): this means that the subspace is constructed
from these selected states plus a mixture of the states above the Fermi level.

We note that no symmetry constraint is imposed a priori on the WF set: therefore the
computed functions do not have in principle a well defined symmetry. We note that different
approaches dealing with symmetry-based WFs for the current class of systems can be found in
the literature [4, 5].

We adopt a kinetic energy cut-off for wavefunctions of 120 Ryd (25 Ryd) when using
NCPP (USPP) and of 480 Ryd (200 Ryd) for the density. In figure 1 we superimpose the band
structure directly computed from a USPP-DFT calculation and that obtained from Wannier
function interpolation [6, 7, 14] on the adopted 8 × 8 × 8 uniform k-point grid. These two sets
of bands are almost superimposed below the Fermi energy and some slight differences arise
only at higher energies. This is expected due to the choice of the energy window for the frozen
states7: while the eigenvalues for the k-points in the adopted regular mesh are the same as those
from the DFT calculation by construction, it is not trivial that the band structure along a generic
Brillouin zone line is well reproduced. This is indeed the case here, being a signature of proper
localization of the computed WFs. The band structure interpolation obtained from NCPP is
essentially the same as the one in figure 1 and it is not reported. Some small discrepancies
between NCPP and USPP interpolated bands are also present in the starting DFT calculations
and are not of interest to us in this context.

In table 1 we report a more detailed description of quantities related to WFs (spreads, real
space decay of the Hamiltonian matrix elements) in order to compare the NCPP and USPP
approaches. A measure of the Hamiltonian decay is defined as

d(R) =
(

1

Nw

∑
mn

|Hmn(R)|2
)1/2

, (17)

where we defined Hmn(R) = 〈w0,m |H |wR,n〉. These quantities are significant as a signature of
the localization of the WFs used to compute the matrix elements (the more localized the WFs,
the more rapidly the H matrix elements decay in space).

USPP results appear to be in very good agreement with those related to NCPP, most of
the differences being reasonably due to the pseudopotential generation and not to the WF

7 Frozen states in the disentanglement procedure are described in detail in [7].
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Figure 2. For fcc copper: the charge distribution for WFs computed using USPP. (a) Interstitial
WF, �a = 11.28 Bohr2; (b)–(d) d-character WFs, �b = 1.86 Bohr2, �c = 2.70 Bohr2,
�d = 1.54 Bohr2. The two additional d-like WFs not reported here are strictly similar to (b)
and (c) by virtue of symmetry relations.

Table 1. For fcc copper: WF spreads (Bohr2) and real space decay of the Hamiltonian matrix
elements (eV) for NCPP, USPP and USPP in the thermodynamic limit approximation (USPP-TLA).
� is the total spread, �I, �D and�OD are the invariant, diagonal and off-diagonal terms, according
to (A.3). d(R) is a measure of the spatial decay of the Hamiltonian on the WF basis, as described
in (17). τ is the (0.5 0.5 0.0) direct lattice vector.

NCPP USPP USPP-TLA

� 22.434 23.010 18.886
�I 14.767 15.629 11.303
�D+OD 7.667 7.381 7.583

d(τ ) 0.4876 0.4795 0.4779
d(2τ ) 0.0493 0.0473 0.0476
d(3τ ) 0.0203 0.0207 0.0205

computation. The average number of iterations required to converge the disentanglement
and the localization procedures are almost the same, as are the singular spread values for the
WFs. Figure 2 reports the spatial distribution of WFs from USPP calculations. As in previous
works [7, 36], we find one interstitial s-like WF with the largest spread (figure 2(a)), and five
more localized d-like WFs (figures 2(b)–(d)), correctly reproducing the physical s–d picture of
copper.

As a last remark for the case of copper, we analyse the effect of neglecting the e−ib·r
term in (14), i.e. the USPP thermodynamic limit approximation (USPP-TLA). The theoretical
background has already been discussed in section 2.3; here we focus on the numerical
aspects. In table 1 the third column reports the results of the calculation performed within
this approximation: it is evident that the numerical values of the USPP-TLA spreads deviate
from the NCPP ones much more than the USPP do. In contrast, the interpolated band structure
and the real space decay Hamiltonian matrix elements are definitely well suited and comparable
with those obtained in the full USPP treatment. Since the TLA is known to become exact in the
thermodynamic limit, we expect it to work better when increasing the dimension of the k-point
mesh. We checked the behaviour of the approximation with respect to different meshes but no
convergence could be reached for grids ranging from 4 × 4 × 4 to 10 × 10 × 10 k-points.
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Figure 3. DNA bases. (a) Chemical schemes of the four DNA bases (G, C, A, T) assembled in the
two Watson–Crick base pairs (GC and AT). (b) Isosurface plots of selected MLWFs for the GC base
pair, representing a single C–C bond (SB), a double N=C bond (DB) and two oxygen lone pairs
(LP). Dashed lines represent hydrogen bonds that bind the base pairs.

3.2. Isolated molecules: DNA bases and base pairs

Maximally localized Wannier functions8 have been widely used to characterize the electrostatic
properties of several molecular systems ranging from e.g. water [47–49] and small
molecules [50–53] to large biomolecules, such as proteins [54], nucleic acids [55, 56],
enzymes [57] and ionic channels [58]. In fact, the Wannier transformation allows one to
partition the charge density into localized distributions of charges sitting on the so-called
Wannier centres 〈r̂〉n [8, 9]. In the case of isolated molecular systems, the dipole moment
is a well defined quantity given by p = pion + pel with

pion = +e
∑

I

Z IRI,

pel = −2e
occ∑
n

〈r̂〉n,
(18)

where pion and pel are the ionic and electronic components respectively; e is the electron charge;
the I summation is over the ionic sites RI and Z I is the valence charge of the I th atom, as
defined by the corresponding pseudopotential; the n summation is over the doubly occupied
valence states.

As a key test, we calculated the dipole moments of the four isolated DNA bases: guanine
(G), cytosine (C), adenine (A) and thymine (T), and of the two Watson–Crick base pairs G–C
and A–T, whose structures are reported in figure 3(a).

8 For isolated systems, which can be viewed as the limiting case of periodic systems in the �-only sampling of the
BZ, MLWFs match the well known localization criteria proposed by Boys in [46] giving raise to Boys orbitals. See
e.g. [35, 34] for more details.
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Table 2. DNA bases: Dipole moments |p| (Debye) for isolated nucleobases (G, C, A, T) and for
Watson–Crick base pairs (G–C, A–T). Present work results for both USPP and NCPP approaches
are compared with previous quantum chemistry HF/6-31G** calculations [59] and experimental
data.

USPP NCPP HF/6-31G** Exp.

G 7.1 7.2 7.1 7.1a

C 6.7 6.9 7.1 7.0b

A 2.3 2.3 2.5 2.5a

T 4.2 4.4 4.6 4.1c

G–C 4.9 4.9 6.5
A–T 1.7 1.8 2.0

a Reference [60].
b Reference [61].
c Reference [62].

We simulated each system in a large (22 × 22 × 22) Å
3

supercell, which allows us
to avoid spurious interactions among neighbour replicas. For isolated systems, the uniform
k-point grid reduces to the case of the � point only, and the connecting vectors b (4) correspond
to the generators of the reciprocal lattice vectors. We expanded the electronic wavefunctions
(charge density) up to a kinetic energy cut-off of 25 (200) and 80 (320) Ryd, using USPP and
NCPP respectively.

We first optimized the atomic structure of the two base pairs G–C and A–T until the
forces on all atoms were lower than 0.03 eV Å

−1
, using ultrasoft pseudopotentials. Then,

keeping atoms fixed in the relaxed geometry, we calculated the electronic structure and the
corresponding MLWFs for both the single bases and the base pairs. We maintained the same
geometries also for the corresponding NCPP calculations. In this case we have checked that
forces on single atoms never exceeded the value of 0.05 eV Å

−1
.

Our results for both sets of calculations are reported in table 2. We note a very good
internal agreement between the USPP and NCPP cases, as well as in comparison with previous
quantum chemistry HF/6-31G** calculations [59] and experimental results.

As a benchmark, we have also computed the dipole of guanine from the plane-wave charge
density, obtaining a difference of 0.04 (0.08) Debye for USPP (NCPP) w.r.t. the value computed
by means of WFs and reported in table 2. These small deviations measure the precision of the
results based on WFs, and we checked that it can be controlled, i.e. made smaller and smaller,
by increasing the simulation cell.

The total spread � and its components �I, �OD (not shown) are also very similar in the
two sets of calculations, while the diagonal term �D is, by definition [6], identically zero for
isolated systems.

Finally, we can take advantage of the calculated Wannier functions to further investigate
the electronic distribution and the bonding pattern in the molecules [63]. For example, as
shown in figure 3(b) for the case of the G–C base pair, we are able to characterize different
kinds of bonds. The SB Wannier function represents a single σ bond: it is centred in the
middle point of the C–C bond. The two DB WFs describe instead a double N=C bond: this
bond is partially polarized with a slight charge accumulation near the nitrogen atom. Finally,
the LP WFs represents two electron lone pairs localized around the oxygen atom of the guanine
molecule. Note also that the distribution of single/double bonds correctly reflects the theoretical
one reported in figure 3(a). Let us remark here that our benchmark for assessing the success
of the newly developed USPP-WF methodology is its relative performance with respect to the
NCPP-WF (already established) framework, namely the comparison between columns 2 and 3
in table 2.

11
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Table 3. AlN: electronic spontaneous polarization (C m−2) of the wurtzite structure. The results
presented (NCPP, USPP and USPP-TLA) are compared to the literature. As a reference we also
report the invariant (�I) and the total spread (�; Bohr2) given by the WF calculations for wurtzite.
Results from [12] are obtained using GGA and LDA (in parentheses) respectively.

PSP NCPP USPP USPP-TLA

This work −0.081 −0.080 −0.080
Ref. [12] −0.090 (−0.099)
Ref. [68] −0.120

� 80.895 80.756 80.271
�I 67.683 67.857 67.282

3.3. AlN wurtzite

Here we move to the calculation of polarization in periodic systems. See the review by Resta [8]
for a more detailed description. We focus on the case of aluminium nitride and compute
the spontaneous polarization PSP of the wurtzite phase. This is a particularly appealing test
case since a large debate exists in the literature and many results are present [64–68, 12, 69].
Moreover, nitrogen may be more easily described (in terms of PW kinetic energy cut-off) with
USPPs than with NCPPs, allowing for an advantageous application of the current formalism.
Following [12, 70] we evaluate the polarization (electronic and ionic contributions) for the
wurtzite (WZ) phase taking the zinc-blende (ZB) structure as a reference. Our calculations
adopt the GGA-PBE parametrization for the exchange–correlation functional, and use cut-off
energies of 60 Ryd (25 Ryd) for NCPP (USPP) for wavefunctions and 240 Ryd (200 Ryd) for
the density.

We relax both the cell dimensions and the atomic positions of the WZ phase. The ZB
reference is assumed to have ideal atomic positions and the cell is taken to have the same
volume (but not the shape) as the one computed for the WZ polytype (six bilayers are included
in the cell). These structural calculations have been performed using USPP and the (lattice and
ionic) parameters obtained have been used also in the NCPP simulations. Using a 16 × 16 × 4
Monkhorst–Pack [71] mesh of k-points we obtained the a and c/a parameters of the hexagonal
lattice as a = 3.1144 Å and c/a = 1.6109 (for the standard WZ cell including two bilayers;
c/a = 4.8326 for the actual cell we adopted). The resulting ZB cell has the ideal parameter
c/a = 4.899 while a = 3.1002 Å.

In table 3 we report the comparison of USPP and NCPP results in our calculations as
well as other results from the literature. We estimate the numerical accuracy of the calculation
to be of the order of 0.005 C m−2. The values of spontaneous polarization computed using
NCPPs are almost identical to those obtained with USPPs (PSP = −0.080 C m−2). The
USPP-TLA behaves very accurately in this case and no difference can be found with respect
to the full USPP calculation. Our results are also in nice agreement with the USPP-TLA
calculation by Bernardini et al [12], who used a Berry-phase formalism [9] and found a value of
PSP = −0.090 C m−2. We thus conclude that the USPP-TLA approximation performs well for
the computation of the spontaneous polarization in nitrides, relative to a pure USPP treatment
without the thermodynamic limit approximation.

These results for the PSP in AlN wurtzite are also in agreement with indirect experimental
evidence as reported in [67, 66, 69]. While some earlier experimental fits [72, 73] claim much
lower values of PSP (ranging from −0.040 to −0.060 C m−2), later [69, 74] works explain this
discrepancy as due the neglecting of bowing effects (non-linearity) of the PSP with respect to
the composition of the alloy Alx Ga1−x N employed in the measurements.
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4. Conclusions

In this paper we presented an approach for calculating maximally localized Wannier functions in
the general framework of the PAW theory. This formalism then recovers the USPP framework
as a special case. The main advantage of using PAW/USPP over NCPP is the well known
reduction of the computational effort in the evaluation of the electronic wavefunctions at the
DFT level. This leads to a consequent reduction of computational load also in the calculation
of MLWFs. Furthermore, the reformulation within the PAW scheme allows us to interface the
computation of MLWFs to other popular approaches for the electronic structure calculation.
Finally, our method is formulated in the case of a uniform k-point mesh for the sampling of
the Brillouin zone (BZ), which includes (but is more general than) a previous attempt based
on �-only calculations. This allows us to treat periodic solid-state systems (such as crystals,
surfaces and interfaces), which require a full description of the BZ, as well as molecular, finite
or amorphous systems which are well described with the �-only representation.

As a first illustration of the capability of this methodology, we presented the calculation
of the MLWFs for a few selected test cases, easily referable to well established theoretical and
experimental results. For each selected system we also compared the results for both USPP and
NCPP calculations, underlining a very good agreement between the two cases.

The reduction of the computational cost resulting from USPP calculations opens the way to
the exploitation of the MLWFS as a powerful tool for analysing the electronic structure of larger
and more realistic nanoscale systems, in particular for transport in nanojunctions [14, 15].
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Appendix A. Main formulae for maximally localized Wannier functions

For the sake of completeness we report here the main relations [6] entering the expression (3)
for the spread functional� [U ] and its first derivative w.r.t. the unitary transformation U . These
are all the quantities involved in the minimization procedure for the calculation of maximally
localized Wannier functions. The expectation values of the position operator are

〈r〉n = − 1

N

∑
k,b

wbb Im ln Mk,b
nn , (A.1)

〈r 2〉n = 1

N

∑
k,b

wb
{[

1 − |Mk,b
nn |2] + [

Im ln Mk,b
nn

]2}
, (A.2)

where b-vectors connect nearest-neighbour k-points and wb are their weights according to
appendix B of [6].

To make the � dependence on the overlap explicit, the spread functional can be divided
into three terms, the invariant (I), the diagonal (D) and the off-diagonal (OD) components [6]:

�[U ] = �I +�D[U ] +�OD[U ], (A.3)
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whose definitions are, respectively,

�I = 1

N

∑
k,b

wb

(
Nw −

∑
mn

|Mk,b
nn |2

)
, (A.4)

�D = 1

N

∑
k,b

wb

∑
n

(
Im ln Mk,b

nn + b · rn
)2
, (A.5)

�OD = 1

N

∑
k,b

wb

∑
m �=n

|Mk,b
mn |2. (A.6)

Appendix B. Detailed expressions for the calculation of |βk
i 〉 and Qij(b)

We report the explicit expression for the calculation of the reciprocal space representation of
the PAW/USPP projectors and the Fourier transform of the augmentation densities:

QI
i j (b) =

∫
dre−ib·r QI

i j (r − τ I). (B.1)

Here we made explicit the dependence of QI
i j (b) on the atomic position τ I. These tasks are also

required in the evaluation of e.g. the density in reciprocal space and are therefore performed in
standard plane-wave DFT codes.

The indices i, j in βi(r) and Qi j (r) stand for radial and angular numbers, e.g. ni li mi .
Projectors and augmentation densities are explicitly written as products of a radial part and
(real) spherical harmonics:

βi (r) = Rni (r)Y
mi
li
(r̂) (B.2)

Qi j (r) = gni n j (r)Y
mi
li
(r̂)Y

m j

l j
(r̂). (B.3)

First we focus on the expression for β projectors. Functions of the form f (r) =
R(r) Y M

L (r̂) have a known semi-analytical Fourier transform which is given by

f (k) = 4π(−i)lY m
l (k̂)

∫ ∞

0
r 2 R(r)Jl(kr) dr (B.4)

where Jl(x) is the spherical Bessel function of order l. The problem for β projectors is therefore
directly solved once we add the structure factors accounting for the actual positions of the ion:

βk
I i (G) = 4π(−i)li e−i(k+G)τ I Y mi

li
(Ĝ)

∫ ∞

0
r 2 Rni (r)Jli (Gr) dr. (B.5)

Moving to the case of the augmentation densities, we note that the product of two spherical
harmonics can be expressed as a linear combination of single spherical harmonics using
Clebsch–Gordan coefficients:

Y mi
li
(r̂)Y

m j

l j
(r̂) =

li +l j∑
L=|li −l j |

L∑
M=−L

C L M
li l j mi m j

Y M
L (r̂). (B.6)

This allows us to follow the same strategy as before also for (B.3). Putting (B.4)–(B.6) together,
the final expression for QI

i j (b) reads

QI
i j (b) = 4πe−ib·τ ∑

L

∑
M

C L M
li l j mi m j

(−i)LY M
L (b̂)

∫ ∞

0
r 2gni n j (r)JL(br) dr (B.7)

where the M, L indices run as in (B.6).
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